The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem with a small...
In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction.
Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface, front-tracking...
We prove by giving an example that when the asymptotic behavior of functionals is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.
We prove by giving an example that when n ≥ 3 the
asymptotic behavior of functionals
is quite different with respect to the planar case. In particular we
show that the one-dimensional ansatz due to Aviles and Giga in the
planar case (see [2]) is no longer true in higher dimensions.
Currently displaying 1 –
14 of
14