Displaying 21 – 40 of 44

Showing per page

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of this...

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of...

New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains

Gabriel R. Barrenechea, Patrick Le Tallec, Frédéric Valentin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Different effective boundary conditions or wall laws for unsteady incompressible Navier-Stokes equations over rough domains are derived in the laminar setting. First and second order unsteady wall laws are proposed using two scale asymptotic expansion techniques. The roughness elements are supposed to be periodic and the influence of the rough boundary is incorporated through constitutive constants. These constants are obtained by solving steady Stokes problems and so they are calculated only once....

New Wall Laws for the Unsteady Incompressible Navier-Stokes Equations on Rough Domains

Gabriel R. Barrenechea, Patrick Le Tallec, Frédéric Valentin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Different effective boundary conditions or wall laws for unsteady incompressible Navier-Stokes equations over rough domains are derived in the laminar setting. First and second order unsteady wall laws are proposed using two scale asymptotic expansion techniques. The roughness elements are supposed to be periodic and the influence of the rough boundary is incorporated through constitutive constants. These constants are obtained by solving steady Stokes problems and so they are calculated only...

Numerical analysis of coupling for a kinetic equation

Moulay Tidriri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.

Singular Perturbations For Heart Image Segmentation Tracking

J. Pousin (2009)

Mathematical Modelling of Natural Phenomena

In this note we give a result of convergence when time goes to infinity for a quasi static linear elastic model, the elastic tensor of which vanishes at infinity. This method is applied to segmentation of medical images, and improves the 'elastic deformable template' model introduced previously.

Sur l’équation de Prandtl

David Gérard-Varet, Emmanuel Dormy (2008/2009)

Séminaire Équations aux dérivées partielles

L’objet de cette note est le problème de Cauchy pour l’équation de Prandtl, dans des espaces de régularité Sobolev. Nous discutons de façon synthétique des résultats récents [4], établissant le caractère fortement linéairement mal posé de ce problème.

Currently displaying 21 – 40 of 44