The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.
We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients.
Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow
and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation.
We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.
The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates of the...
The aim of this paper is to study a class of domains whose
geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains
with rapidly pulsing (in time) periodic
perforations, with a homogeneous Neumann condition on the boundary of the holes.
We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero.
Since standard conservation laws do not
hold in this model, a first difficulty is to get
a priori estimates...
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
We study the homogenization of the compressible Navier–Stokes
system in a periodic porous
medium (of period ε) with Dirichlet boundary conditions.
At the limit, we recover different systems
depending on the scaling we take. In particular, we
rigorously derive the so-called “porous medium equation”.
In the paper a Barenblatt-Biot consolidation model for flows in periodic porous elastic media is derived by means of the two-scale convergence technique. Starting with the fluid flow of a slightly compressible viscous fluid through a two-component poro-elastic medium separated by a periodic interfacial barrier, described by the Biot model of consolidation with the Deresiewicz-Skalak interface boundary condition and assuming that the period is too small compared with the size of the medium, the limiting...
Currently displaying 1 –
11 of
11