Page 1

Displaying 1 – 9 of 9

Showing per page

Solutions classiques globales des équations d'Euler pour un fluide parfait compressible

Denis Serre (1997)

Annales de l'institut Fourier

Soit ρ , u , e , S et p les variables usuelles qui décrivent l’état d’un fluide en coordonnées eulériennes. Le domaine physique occupé par le fluide est a priori d tout entier, mais ρ peut être nul en dehors d’un compact K ( t ) . On choisit l’équation d’état d’un gaz parfait, p = ( γ - 1 ) ρ e , où γ [ 1 , 1 + 2 / d ] est une constante. Le cas γ = 1 + 2 / d est celui du gaz mono-atomique.Dans la limite ρ 0 , les collisions sont rares et on est tenté d’approcher le mouvement des particules par un mouvement rectiligne uniforme : le champ de vitesse obéit alors...

Stationary states and moving planes

Gerhard Ströhmer (2008)

Banach Center Publications

Most of the paper deals with the application of the moving plane method to different questions concerning stationary accumulations of isentropic gases. The first part compares the concepts of stationarity arising from the points of view of dynamics and the calculus of variations. Then certain stationary solutions are shown to be unstable. Finally, using the moving plane method, a short proof of the existence of energy-minimizing gas balls is given.

Currently displaying 1 – 9 of 9

Page 1