Page 1

Displaying 1 – 19 of 19

Showing per page

A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids

T. Haga, H. Gao, Z. J. Wang (2011)

Mathematical Modelling of Natural Phenomena

The newly developed unifying discontinuous formulation named the correction procedure via reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes equations for 3D mixed grids. In the current development, tetrahedrons and triangular prisms are considered. The CPR method can unify several popular high order methods including the discontinuous Galerkin and the spectral volume methods into a more efficient differential form....

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional...

A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems

Thierry Gallouët, Jean-Marc Hérard, Nicolas Seguin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density...

A multidimensional fluctuation splitting scheme for the three dimensional Euler equations

Jérôme Bastin, Gilbert Rogé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The fluctuation splitting schemes were introduced by Roe in the beginning of the 80's and have been then developed since then, essentially thanks to Deconinck. In this paper, the fluctuation splitting schemes formalism is recalled. Then, the hyperbolic/elliptic decomposition of the three dimensional Euler equations is presented. This decomposition leads to an acoustic subsystem and two scalar advection equations, one of them being the entropy advection. Thanks to this decomposition, the two scalar...

A new domain decomposition method for the compressible Euler equations

Victorita Dolean, Frédéric Nataf (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains,...

A note on poroacoustic traveling waves under Darcy's law: Exact solutions

P. M. Jordan, J. K. Fulford (2011)

Applications of Mathematics

A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are...

A second order anti-diffusive Lagrange-remap scheme for two-component flows

Marie Billaud Friess, Benjamin Boutin, Filipa Caetano, Gloria Faccanoni, Samuel Kokh, Frédéric Lagoutière, Laurent Navoret (2011)

ESAIM: Proceedings

We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Air entrainment in transient flows in closed water pipes : A two-layer approach

C. Bourdarias, M. Ersoy, Stéphane Gerbi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we first construct a model for free surface flows that takes into account the air entrainment by a system of four partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). The obtained system is conditionally hyperbolic. Then, we propose a mathematical kinetic interpretation of this system to finally construct a two-layer kinetic scheme...

Asymptotic behavior of the solutions to a one-dimensional motion of compressible viscous fluids

Shigenori Yanagi (1995)

Mathematica Bohemica

We study the one-dimensional motion of the viscous gas represented by the system v t - u x = 0 , u t + p ( v ) x = μ ( u x / v ) x + f 0 x v x ¨ , t , with the initial and the boundary conditions ( v ( x , 0 ) , u ( x , 0 ) ) = ( v 0 ( x ) , u 0 ( x ) ) , u ( 0 , t ) = u ( X , t ) = 0 . We are concerned with the external forces, namely the function f , which do not become small for large time t . The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary L 2 -energy method.

Currently displaying 1 – 19 of 19

Page 1