Initial-boundary value problem for the discrete Boltzmann equation
These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay),...
In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.
We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann,...
Il s’agit de comparer les différents résultats et théorèmes concernant dans un cadre essentiellement déterministe des systèmes de particules. Cela conduit à étudier la notion de hiérarchies d’équations et à comparer les modèles non linéaires et linéaires. Dans ce dernier cas on met en évidence le rôle de l’aléatoire. Ce texte réfère à une série de travaux en collaboration avec F. Golse, A. Gottlieb, D. Levermore et N. Mauser.
We present an efficient approach for reducing the statistical uncertainty associated with direct Monte Carlo simulations of the Boltzmann equation. As with previous variance-reduction approaches, the resulting relative statistical uncertainty in hydrodynamic quantities (statistical uncertainty normalized by the characteristic value of quantity of interest) is small and independent of the magnitude of the deviation from equilibrium, making the simulation of arbitrarily small deviations from equilibrium possible....
In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.
The problem of finding the summational collision invariants for the Boltzmann equation leads to a functional equation related to the Cauchy equation. The solution of this equation is known under different assumptions on its unknown . Most proofs assume that the equation is pointwise satisfied, while the result needed in kinetic theory concerns the solutions of the equation when the latter is satisfied almost everywhere. The only results of this kind appear to be due to the authors of the present...
We state and prove a Korn-like inequality for a vector field in a bounded open set of , satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge–Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case are...
We state and prove a Korn-like inequality for a vector field in a bounded open set of , satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge–Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case...
In this paper a general class of Boltzmann-like bilinear integro-differential systems of equations (GKM, Generalized Kinetic Models) is considered. It is shown that their solutions can be approximated by the solutions of appropriate systems describing the dynamics of individuals undergoing stochastic interactions (at the "microscopic level"). The rate of approximation can be controlled. On the other hand the GKM result in various models known in biomathematics (at the "macroscopic level") including...
The first part reviews some recent ideas and L¹-existence results for non-linear stationary equations of Boltzmann type in a bounded domain in ℝⁿ and far from global Maxwellian equilibrium. That is an area not covered by the DiPerna and P. L. Lions methods for the time-dependent Boltzmann equation from the late 1980-ies. The final part discusses the more classical perturbative case close to global equilibrium and corresponding small mean free path limits of fully non-linear stationary problems....