Page 1

Displaying 1 – 6 of 6

Showing per page

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Continuous-time finite element analysis of multiphase flow in groundwater hydrology

Zhangxin Chen, Magne Espedal, Richard E. Ewing (1995)

Applications of Mathematics

A nonlinear differential system for describing an air-water system in groundwater hydrology is given. The system is written in a fractional flow formulation, i.e., in terms of a saturation and a global pressure. A continuous-time version of the finite element method is developed and analyzed for the approximation of the saturation and pressure. The saturation equation is treated by a Galerkin finite element method, while the pressure equation is treated by a mixed finite element method. The analysis...

Currently displaying 1 – 6 of 6

Page 1