Global existence of 2D slightly compressible viscous magneto-fluid motion.
Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to and the pressure q satisfies for p ≥ 7/3.
Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.
The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on --estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.
We study a microfluidic flow model where the movement of several charged species is coupled with electric field and the motion of ambient fluid. The main numerical difficulty in this model is the net charge neutrality assumption which makes the system essentially overdetermined. Hence we propose to use the involutive and the associated augmented form of the system in numerical computations. Numerical experiments on electrophoresis and stacking show that the completed system significantly improves...
We study a microfluidic flow model where the movement of several charged species is coupled with electric field and the motion of ambient fluid. The main numerical difficulty in this model is the net charge neutrality assumption which makes the system essentially overdetermined. Hence we propose to use the involutive and the associated augmented form of the system in numerical computations. Numerical experiments on electrophoresis and stacking show that the completed system significantly improves...
We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.