Page 1

Displaying 1 – 11 of 11

Showing per page

Geometry of fluid motion

Boris Khesin (2002/2003)

Séminaire Équations aux dérivées partielles

We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].

Global existence of solutions for incompressible magnetohydrodynamic equations

Wisam Alame, W. M. Zajączkowski (2004)

Applicationes Mathematicae

Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to W p 2 , 1 ( Ω × ( 0 , T ) ) and the pressure q satisfies q L p ( Ω × ( 0 , T ) ) for p ≥ 7/3.

Global existence of solutions of the free boundary problem for the equations of magnetohydrodynamic compressible fluid

Piotr Kacprzyk (2005)

Banach Center Publications

Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.

Global strong solutions of a 2-D new magnetohydrodynamic system

Ruikuan Liu, Jiayan Yang (2020)

Applications of Mathematics

The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on L p - L q -estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.

Currently displaying 1 – 11 of 11

Page 1