Some new results in multiphase geometrical optics
In order to accommodate solutions with multiple phases, corresponding to crossing rays, we formulate geometrical optics for the scalar wave equation as a kinetic transport equation set in phase space. If the maximum number of phases is finite and known a priori we can recover the exact multiphase solution from an associated system of moment equations, closed by an assumption on the form of the density function in the kinetic equation. We consider two different closure assumptions based on delta...
The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.We treat the oscillatory problem for semilinear wave equation. The oscillatory initial data are of the type u(0, x) = h(x) + ε^(σ+1) * e^(il(x)/ε) * b0 (ε, x) ∂t u(0, x) = ε^σ * e^(il(x)/ε) * b1(ε, x). By using suitable variants of Strichartz estimate we extend the results from [6] on a priori estimates of the approximations of geometric optics.The main improvement...
Cet exposé s’intéresse à un modèle réaliste issu de la mécanique des fluides. L’objectif est de montrer qu’il est possible de traiter dans un tel cadre des problèmes d’instabilité soulevés par la propagation de singularités qualifiées de surcritiques. D’abord, nous introduisons le modèle (équations de type Navier-Stokes) et ses motivations (questions liées à la propagation d’oscillations en régime turbulent). Ensuite, nous présentons deux résultats (relatifs au caractère bien posé d’un problème...
Physical systems producing caustics may possess symmetries. In that case the relation between the symmetry of the system, considered as a whole, and the symmetry of the caustic follow a very general symmetry principle, the Curie principle. We give various examples of application of the Curie principle to caustics produced by the deflection of light in liquid crystals: the so called squint effect, the visualization of a new type of roll structure, etc. We show also that the Curie principle applies...