Page 1

Displaying 1 – 6 of 6

Showing per page

A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals : an application to KDP

Christophe Besse, Brigitte Bidégaray-Fesquet, Antoine Bourgeade, Pierre Degond, Olivier Saut (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell’s equations for the wave field coupled with a version of Bloch’s equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material....

A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP

Christophe Besse, Brigitte Bidégaray-Fesquet, Antoine Bourgeade, Pierre Degond, Olivier Saut (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article presents the derivation of a semi-classical model of electromagnetic-wave propagation in a non centro-symmetric crystal. It consists of Maxwell's equations for the wave field coupled with a version of Bloch's equations which takes fully into account the discrete symmetry group of the crystal. The model is specialized in the case of a KDP crystal for which information about the dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the material. ...

A multi-D model for Raman amplification

Mathieu Colin, Thierry Colin (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs. 17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math. 193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect...

A multi-D model for Raman amplification

Mathieu Colin, Thierry Colin (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs.17 (2004) 297–330; Colin and Colin, J. Comput. Appl. Math.193 (2006) 535–562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect to...

Adiabatic approximation for a two-level atom in a light beam

Amandine Aftalion, Francis Nier (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Following the recent experimental realization of synthetic gauge potentials, Jean Dalibard addressed the question whether the adiabatic ansatz could be mathematically justified for a model of an atom in 2 internal states, shone by a quasi resonant laser beam. In this paper, we derive rigorously the asymptotic model guessed by the physicists, and show that this asymptotic analysis contains the information about the presence of vortices. Surprisingly, the main difficulties do not come from the nonlinear...

Currently displaying 1 – 6 of 6

Page 1