-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
We investigate sufficient and possibly necessary conditions for the L2 stability of the upwind first order finite volume scheme for Maxwell equations, with metallic and absorbing boundary conditions. We yield a very general sufficient condition, valid for any finite volume partition in two and three space dimensions. We show this condition is necessary for a class of regular meshes in two space dimensions. However, numerical tests show it is not necessary in three space dimensions even on regular...
The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand...
The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems