Page 1

Displaying 1 – 10 of 10

Showing per page

On evolution Galerkin methods for the Maxwell and the linearized Euler equations

Mária Lukáčová-Medviďová, Jitka Saibertová, Gerald G. Warnecke, Yousef Zahaykah (2004)

Applications of Mathematics

The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical...

On highly oscillatory problems arising in electronic engineering

Marissa Condon, Alfredo Deaño, Arieh Iserles (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider linear ordinary differential equations originating in electronic engineering, which exhibit exceedingly rapid oscillation. Moreover, the oscillation model is completely different from the familiar framework of asymptotic analysis of highly oscillatory integrals. Using a Bessel-function identity, we expand the oscillator into asymptotic series, and this allows us to extend Filon-type approach to this setting. The outcome is a time-stepping method that guarantees ...

On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations

Eliane Bécache, Patrick Joly (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, we investigate the Perfectly Matched Layers (PML) introduced by Bérenger [3] for designing efficient numerical absorbing layers in electromagnetism. We make a mathematical analysis of this model, first via a modal analysis with standard Fourier techniques, then via energy techniques. We obtain uniform in time stability results (that make precise some results known in the literature) and state some energy decay results that illustrate the absorbing properties of the model. This last...

On the analysis of Bérenger's Perfectly Matched Layers for Maxwell's equations

Eliane Bécache, Patrick Joly (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we investigate the Perfectly Matched Layers (PML) introduced by Bérenger [3] for designing efficient numerical absorbing layers in electromagnetism. We make a mathematical analysis of this model, first via a modal analysis with standard Fourier techniques, then via energy techniques. We obtain uniform in time stability results (that make precise some results known in the literature) and state some energy decay results that illustrate the absorbing properties of the model. This...

On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions

José Luis López, Jesús Montejo–Gámez (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes...

On the importance of solid deformations in convection-dominated liquid/solid phase change of pure materials

Daniela Mansutti, Edoardo Bucchignani (2011)

Applications of Mathematics

We analyse the effect of the mechanical response of the solid phase during liquid/solid phase change by numerical simulation of a benchmark test based on the well-known and debated experiment of melting of a pure gallium slab counducted by Gau & Viskanta in 1986. The adopted mathematical model includes the description of the melt flow and of the solid phase deformations. Surprisingly the conclusion reached is that, even in this case of pure material, the contribution of the solid phase to the...

Currently displaying 1 – 10 of 10

Page 1