The search session has expired. Please query the service again.
Displaying 261 –
280 of
549
This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of -Laplacian type and a double well potential with suitable growth conditions. We prove that level sets of solutions of possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.
We review some of the most important phenomena due to the phonon-wall collisions in nonlocal heat transport in nanosystems, and show how they may be described through certain slip boundary conditions in phonon hydrodynamics. Heat conduction in nanowires of different cross sections and in thin layers is analyzed, and the dependence of the thermal conductivity on the geometry, as well as on the roughness is pointed out. We also analyze the effects of the roughness of the surface of the pores on the...
We describe behavior of the air-coal mixture using the Navier–Stokes equations for gas and particle phases, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to where is temperature). We also consider the heat transfer via conduction and radiation. Moreover we use improved turbulence-chemistry interactions for reaction terms. The system of PDEs is discretized using the finite volume method (FVM) and an advection...
This article focuses on heat radiation intensity optimization on the surface of a shell metal mould. Such moulds are used in the automotive industry in the artificial leather production (the artificial leather is used, e.g., on car dashboards). The mould is heated by infrared heaters. After the required temperature is attained, the inner mould surface is sprinkled with special PVC powder. The powder melts and after cooling down it forms the artificial leather. A homogeneous temperature field of...
We present a model coupling the fire propagation equations in a bidimensional domain representing the surface, and the air movement equations in a three dimensional domain representing an air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional convective model governed by a bidimensional equation verified by a stream function. We also present the numerical simulations of these equations.
Currently displaying 261 –
280 of
549