La théorie des catastrophes. V. Transformées de Legendre et thermodynamique
A class of (1 + 1)-dimensional nonlinear boundary value problems (BVPs), modeling the process of melting and evaporation of solid materials, is studied by means of the classical Lie symmetry method. A new definition of invariance in Lie's sense for BVP is presented and applied to the class of BVPs in question.
Let be one solution towith a non-homogeneous term , and , where is a bounded domain. We discuss an inverse problem of determining unknown functions by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for , . The proof is...
Let y(h)(t,x) be one solution to with a non-homogeneous term h, and , where is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for...
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.We consider a nonlinear model of a continuously stirred bioreactor and study the stability of the equilibrium points with respect to practically important model parameters. We determine regions in the parameter space where the steady states undergo transcritical and Hopf bifurcations. In the latter case, the stability of the emerged limit cycles is also studied. Numerical simulations in the computer algebra...
The local existence and the uniqueness of solutions for equations describing the motion of viscous compressible heat-conducting fluids in a domain bounded by a free surface is proved. First, we prove the existence of solutions of some auxiliary problems by the Galerkin method and by regularization techniques. Next, we use the method of successive approximations to prove the local existence for the main problem.
Global existence of regular solutions to the Navier-Stokes equations for (v,p) coupled with the heat convection equation for θ is proved in the two-dimensional case in a bounded domain. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence is proved by the Leray-Schauder fixed point theorem. We prove the existence of solutions such that , , s>2.
This article is devoted to the study of a flame ball model, derived by G. Joulin, which satisfies a singular integro-differential equation. We prove that, when radiative heat losses are too important, the flame always quenches; when heat losses are smaller, it stabilizes or quenches, depending on an energy input parameter. We also examine the asymptotics of the radius for these different regimes.