Effects of magnetic field and nonlinear temperature profile on Marangoni convection in micropolar fluid.
The paper deals with a model for water freezing in a deformable elastoplastic container. The mathematical problem consists of a system of one parabolic equation for temperature, one integrodifferential equation with a hysteresis operator for local volume increment, and one differential inclusion for the water content. The problem is shown to admit a unique global uniformly bounded weak solution.
We overview the notion of entropy in thermodynamics. We start from the smooth case using differential forms on the manifold, which is the natural language for thermodynamics. Then the axiomatic definition of entropy as ordering on a set that is induced by adiabatic processes will be outlined. Finally, the viewpoint of category theory is provided, which reinterprets the ordering structure as a category of pre-ordered sets.
We prove an existence result of entropy solutions for a class of strongly nonlinear parabolic problems in Musielak-Sobolev spaces, without using the sign condition on the nonlinearities and with measure data.
The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori...
In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.