Page 1 Next

Displaying 1 – 20 of 24

Showing per page

Non-Fourier heat removal from hot nanosystems through graphene layer

A. Sellitto, F.X. Alvarez (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.

Nonlinear Time-Fractional Differential Equations in Combustion Science

Pagnini, Gianni (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 34A08 (main), 34G20, 80A25The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion...

Non-Trapping sets and Huygens Principle

Dario Benedetto, Emanuele Caglioti, Roberto Libero (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the evolution of a set Λ 2 according to the Huygens principle: i.e. the domain at time t>0, Λt, is the set of the points whose distance from Λ is lower than t. We give some general results for this evolution, with particular care given to the behavior of the perimeter of the evoluted set as a function of time. We define a class of sets (non-trapping sets) for which the perimeter is a continuous function of t, and we give an algorithm to approximate the evolution. Finally we restrict...

Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays

Frédérique Laurent (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this article is the analysis and the development of Eulerian multi-fluid models to describe the evolution of the mass density of evaporating liquid sprays. First, the classical multi-fluid model developed in [Laurent and Massot, Combust. Theor. Model.5 (2001) 537–572] is analyzed in the framework of an unsteady configuration without dynamical nor heating effects, where the evaporation process is isolated, since it is a key issue. The classical multi-fluid method consists then in...

Numerical aspects of the identification of thermal characteristics using the hot-wire method

Vala, Jiří (2013)

Programs and Algorithms of Numerical Mathematics

The hot-wire method, based on the recording of the temperature development in time in a testing sample, supplied by a probe with its own thermal source, is useful to evaluate the thermal conductivity of materials under extremal loads, in particular in refractory brickworks. The formulae in the technical standards come from the analytical solution of the non-stationary equation of heat conduction in cylindric (finally only polar) coordinates for a simplified formulation of boundary conditions, neglecting...

Numerical methods for phase transition problems

Claudio Verdi (1998)

Bollettino dell'Unione Matematica Italiana

Nel presente articolo si illustrano alcuni dei principali metodi numerici per l'approssimazione di modelli matematici legati ai fenomeni di transizione di fase. Per semplificare e contenere l'esposizione ci siamo limitati a discutere con un certo dettaglio i metodi più recenti, presentandoli nel caso di problemi modello, quali il classico problema di Stefan e l'evoluzione di superficie per curvatura media, solo accennando alle applicazioni e modelli più generali.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Currently displaying 1 – 20 of 24

Page 1 Next