About mathematical models of phase transitions.
Quasi-steady state assumptions are often used to simplify complex systems of ordinary differential equations in the modelling of biochemical processes. The simplified system is designed to have the same qualitative properties as the original system and to have a small number of variables. This enables to use the stability and bifurcation analysis to reveal a deeper structure in the dynamics of the original system. This contribution shows that introducing delays to quasi-steady state assumptions...
The paper deals with the theory of actions on thermodynamical systems. It is proved that if an action has the conservation property at least at one state then it has the conservation property at every state and admits an everywhere defined continuous potential. An analogous result for semi-systems is also proved.
Una idea di G. Fichera ed un risultato di W. A. Day vengono usati per provare che il calore, nella teoria di Fourier, simula una propagazione di tipo ondoso.
The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...
The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...
This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and make it possible...
We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.
Using the approach in [5] for analysing time discretization error and assuming more regularity on the initial data, we improve on the error bound derived in [2] for a fully practical piecewise linear finite element approximation with a backward Euler time discretization of a model for phase separation of a multi-component alloy with non-smooth free energy.