Displaying 121 – 140 of 549

Showing per page

Coupled heat transport and Darcian water flow in freezing soils

Krupička, Lukáš, Štefan, Radek, Beneš, Michal (2013)

Programs and Algorithms of Numerical Mathematics

The model of coupled heat transport and Darcian water flow in unsaturated soils and in conditions of freezing and thawing is analyzed. In this contribution, we present results concerning the existence of the numerical solution. Numerical scheme is based on semi-implicit discretization in time. This work illustrates its performance for a problem of freezing processes in vertical soil columns.

Coupling of chemical reaction with flow and molecular transport

Ulrich Maas (1995)

Applications of Mathematics

During the last years the interest in the numerical simulation of reacting flows has grown considerably. Numerical methods are available, which allow to couple chemical kinetics with flow and molecular transport. However, the use of detailed physical and chemical models, involving more than 100 chemical species, and thus more than 100 species conservation equations, is restricted to very simple flow configurations like one-dimensional systems or two-dimensional systems with very simple geometries,...

Derivation of a homogenized two-temperature model from the heat equation

Laurent Desvillettes, François Golse, Valeria Ricci (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat,...

Diffuse-interface treatment of the anisotropic mean-curvature flow

Michal Beneš (2003)

Applications of Mathematics

We investigate the motion by mean curvature in relative geometry by means of the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the existence result for the solution as well as a result concerning the asymptotical behaviour with respect to the thickness parameter. By means of a numerical scheme, we can approximate the original law, as shown in several computational examples.

Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model

Nicolas Bouillard, Robert Eymard, Raphaele Herbin, Philippe Montarnal (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Modeling the kinetics of a precipitation dissolution reaction occurring in a porous medium where diffusion also takes place leads to a system of two parabolic equations and one ordinary differential equation coupled with a stiff reaction term. This system is discretized by a finite volume scheme which is suitable for the approximation of the discontinuous reaction term of unknown sign. Discrete solutions are shown to exist and converge towards a weak solution of the continuous problem. Uniqueness...

Direct approach to mean-curvature flow with topological changes

Petr Pauš, Michal Beneš (2009)

Kybernetika

This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves Γ ( t ) : S 2 , t 0 . The curves are driven by the normal velocity v which is the function of curvature κ and the position. The evolution law reads as: v = - κ + F . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...

Currently displaying 121 – 140 of 549