Displaying 141 – 160 of 206

Showing per page

Solutions of the Dirac-Fock equations without projector

Éric Paturel (2000)

Journées équations aux dérivées partielles

In this paper we prove the existence of infinitely many solutions of the Dirac-Fock equations with N electrons turning around a nucleus of atomic charge Z , satisfying N < Z + 1 and α max ( Z , N ) < 2 / ( 2 / π + π / 2 ) , where α is the fundamental constant of the electromagnetic interaction (approximately 1/137). This work is an improvement of an article of Esteban-Séré, where the same result was proved under more restrictive assumptions on N .

Sparse grids for the Schrödinger equation

Michael Griebel, Jan Hamaekers (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore...

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and then sum over...

Currently displaying 141 – 160 of 206