Faster than Hermitian time evolution.
A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jakić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.