Displaying 221 – 240 of 412

Showing per page

On two possible constructions of the quantum semigroup of all quantum permutations of an infinite countable set

Debashish Goswami, Adam Skalski (2012)

Banach Center Publications

Two different models for a Hopf-von Neumann algebra of bounded functions on the quantum semigroup of all (quantum) permutations of infinitely many elements are proposed, one based on projective limits of enveloping von Neumann algebras related to finite quantum permutation groups, and the second on a universal property with respect to infinite magic unitaries.

Optimal Holomorphic Hypercontractivity for CAR Algebras

Ilona Królak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We present a new proof of Janson’s strong hypercontractivity inequality for the Ornstein-Uhlenbeck semigroup in holomorphic algebras associated with CAR (canonical anticommutation relations) algebras. In the one generator case we calculate optimal bounds for t such that U t is a contraction as a map L ( ) L p ( ) for arbitrary p ≥ 2. We also prove a logarithmic Sobolev inequality.

Poisson Lie groups and their relations to quantum groups

Janusz Grabowski (1995)

Banach Center Publications

The notion of Poisson Lie group (sometimes called Poisson Drinfel'd group) was first introduced by Drinfel'd [1] and studied by Semenov-Tian-Shansky [7] to understand the Hamiltonian structure of the group of dressing transformations of a completely integrable system. The Poisson Lie groups play an important role in the mathematical theories of quantization and in nonlinear integrable equations. The aim of our lecture is to point out the naturality of this notion and to present basic facts about...

Currently displaying 221 – 240 of 412