Series of iterated quantum stochastic integrals
The aim of this paper is the study of a non-commutative decomposition of the conservation process in quantum stochastic calculus. The probabilistic interpretation of this decomposition uses time changes, in contrast to the spatial shifts used in the interpretation of the creation and annihilation operators on Fock space.
From the operator algebraic approach to stationary (quantum) Markov processes there has emerged an axiomatic definition of quantum white noise. The role of Brownian motion is played by an additive cocycle with respect to its time evolution. In this report we describe some recent work, showing that this general structure already allows a rich theory of stochastic integration and stochastic differential equations. In particular, if a quantum Markov process is represented by a unitary cocycle, we can...