On recurrence relations for radial wave functions for the -th dimensional oscillators and hydrogenlike atoms: analytical and numerical study.
Hydrogen atoms placed in external fields serve as a paradigm of a strongly coupled multidimensional Hamiltonian system. This system has been already very extensively studied, using experimental measurements and a wealth of theoretical methods. In this work, we apply the Morales-Ramis theory of non-integrability of Hamiltonian systems to the case of the hydrogen atom in perpendicular (crossed) static electric and magnetic uniform fields.
In this talk I will discuss recent results on the magnetisation/current of large atoms in strong magnetic fields. It is known from the work (E. Lieb, J.P. Solovej, and J. Yngvason, “Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions”, Commun. Math. Phys. (1994), no. 161, 77-124) of Lieb, Solovej and Yngvason that the energy and density of atoms in strong magnetic fields are given to highest order by a Magnetic Thomas Fermi theory (MTF-theory) when the magnetic field strength...
We consider the 3D quantum BBGKY hierarchy which corresponds to the -particle Schrödinger equation. We assume the pair interaction is . For the interaction parameter , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for in [28]. This allows, in the case , for the application of the Klainerman–Machedon uniqueness theorem...
It is shown that the total electric charge, as determined from the Gauss law, is a quantum object. The argument is based on elementary considerations concerning the number of photons, which should be large in a classical situation.