Displaying 201 – 220 of 1377

Showing per page

Averaged large deviations for random walk in a random environment

Atilla Yilmaz (2010)

Annales de l'I.H.P. Probabilités et statistiques

In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling...

Bethe Ansatz and the geography of rigged strings

Tadeusz Lulek (2007)

Banach Center Publications

We demonstrate the way in which composition of two famous combinatorial bijections, of Robinson-Schensted and Kerov-Kirillov-Reshetikhin, applied to the Heisenberg model of magnetic ring with spin 1/2, defines the geography of rigged strings (which label exact eigenfunctions of the Bethe Ansatz) on the classical configuration space (the set of all positions of the system of r reversed spins). We point out that each l-string originates, in the language of this bijection, from an island of l consecutive...

Branching processes, and random-cluster measures on trees

Geoffrey Grimmett, Svante Janson (2005)

Journal of the European Mathematical Society

Random-cluster measures on infinite regular trees are studied in conjunction with a general type of ‘boundary condition’, namely an equivalence relation on the set of infinite paths of the tree. The uniqueness and non-uniqueness of random-cluster measures are explored for certain classes of equivalence relations. In proving uniqueness, the following problem concerning branching processes is encountered and answered. Consider bond percolation on the family-tree T of a branching process. What is the...

Currently displaying 201 – 220 of 1377