Page 1

Displaying 1 – 15 of 15

Showing per page

Variance decay for functionals of the environment viewed by the particle

Jean-Christophe Mourrat (2011)

Annales de l'I.H.P. Probabilités et statistiques

For the random walk among random conductances, we prove that the environment viewed by the particle converges to equilibrium polynomially fast in the variance sense, our main hypothesis being that the conductances are bounded away from zero. The basis of our method is the establishment of a Nash inequality, followed either by a comparison with the simple random walk or by a more direct analysis based on a martingale decomposition. As an example of application, we show that under certain conditions,...

Velocity and Entropy of Motion in Periodic Potentials

Andreas Knauf (1996/1997)

Séminaire Équations aux dérivées partielles

This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.

Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics

F. Bethuel, G. Orlandi, D. Smets (2004)

Journées Équations aux dérivées partielles

We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N 2 . Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Currently displaying 1 – 15 of 15

Page 1