solutions to the stationary Boltzmann equation in a slab
Dedicando speciale attenzione all’esempio significativo dei cristalli liquidi di Ericksen [6], viene presentato un apparato assiomatico che consente di dedurre rappresentazioni coerenti delle interazioni d’inerzia e dell’energia cinetica per continui con microstruttura.
Consider the partition function of a directed polymer in ℤd, d≥1, in an IID field. We assume that both tails of the negative and the positive part of the field are at least as light as exponential. It is well known that the free energy of the polymer is equal to a deterministic constant for almost every realization of the field and that the upper tail of the large deviations is exponential. The lower tail of the large deviations is typically lighter than exponential. In this paper we obtain sharp...
We study the decay rate of large deviation probabilities of occupation times, up to time t, for the voter model η: ℤ2×[0, ∞)→{0, 1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ∈(0, 1). In [Probab. Theory Related Fields77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(t), log2(t)]. In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when...
We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative...
This expository paper is meant to be a faithful account the invited lecture I gave in Naples on September 14, 1999, during the 16th Congress of U.M.I., the Italian Mathematical Union. In Section 2, I consider the Gilbert equation, the parabolic equation that rules the evolution of the magnetization vector in a rigid ferromagnet. Among the issues I here discuss are the relations of the Gilbert equation to the harmonic map equation and its heat flow, the existence of global-in-time weak solutions,...