A bijection between classes of fully packed loops and plane partitions.
In this paper we extend to arbitrary number fields a construction of Bost-Connes of a -dynamical system with spontaneous symmetry breaking and partition function the Riemann zeta function.
We consider parabolic equations with nonlocal coefficients obtained from the Vlasov-Fokker-Planck equations with potentials. This class of equations includes the classical Debye system from electrochemistry as well as an evolution model of self-attracting clusters under friction and fluctuations. The local in time existence of solutions to these equations (with no-flux boundary conditions) and properties of stationary solutions are studied.
We propose in this short note a method enabling to write in a systematic way a set of refined equations for average ion models in which correlations between populations are taken into account, starting from a microscopic model for the evolution of the electronic configuration probabilities. Numerical simulations illustrating the improvements with respect to standard average ion models are presented at the end of the paper.
The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities...
We study continuous Anderson Hamiltonians with non-degenerate single site probability distribution of bounded support, without any regularity condition on the single site probability distribution. We prove the existence of a strong form of localization at the bottom of the spectrum, which includes Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) with finite multiplicity of eigenvalues, dynamical localization (no spreading of wave packets under the time evolution),...
This article aims at giving a simplified presentation of a new adaptive semi-Lagrangian scheme for solving the (1+1)-dimensional Vlasov-Poisson system, which was developed in 2005 with Michel Mehrenberger and first described in (Campos Pinto and Mehrenberger, 2007). The main steps of the analysis are also given, which yield the first error estimate for an adaptive scheme in the context of the Vlasov equation. This article focuses on a key feature of our method, which is a new algorithm to transport...
We introduce a model, similar to diffusion limited aggregation (DLA), which serves as a discrete analog of the continuous dynamics of evaporation of thin liquid films. Within mean field approximation the dynamics of this model, averaged over many realizations of the growing cluster, reduces to that of the idealized evaporation model in which surface tension is neglected. However fluctuations beyond the mean field level play an important role, and...
We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...