Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields
The geodesic deviation equations, called also the Jacobi equations, describe only the first-order effects, linear in the small parameter characterizing the deviation from an original worldline. They can be easily generalized if we take into account the higher-order terms. Here we derive these higher-order equations not only directly, but also from the Taylor expansion of the variational principle itself. Then we show how these equations can be used in a novel approach to the two-body problem in...
We study classical spin networks with group SU. In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.
In some previous papers [1, 2] we proposed a geometric formulation of continuum mechanics, where a continuous body is seen as a suitable differentiable fiber bundle C on the Galilean space-time M, beside a differential equation of order k, Ek(C), on C and the assignement of a frame Psi on M. This approach allowed us to treat continuum mechanics as a unitary field theory and to consider constitutive and dynamical properties in a more natural way. Further, the particular intrinsic geometrical framework...
2000 Mathematics Subject Classification: 35Lxx, 35Pxx, 81Uxx, 83Cxx.The theory of the waves equations has a long history since M. Riesz and J. Hadamard. It is impossible to cite all the important results in the area, but we mention the authors related with our work: J. Leray [34] and Y. Choquet-Bruhat [9] (Cauchy problem), P. Lax and R. Phillips [33] (scattering theory for a compactly supported perturbation), L. H¨ ormander [27] and J-M. Bony [7] (microlocal analysis). In all these domains, V. Petkov has...