Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Generalized geodesic deviations: a Lagrangean approach

R. Kerner (2003)

Banach Center Publications

The geodesic deviation equations, called also the Jacobi equations, describe only the first-order effects, linear in the small parameter characterizing the deviation from an original worldline. They can be easily generalized if we take into account the higher-order terms. Here we derive these higher-order equations not only directly, but also from the Taylor expansion of the variational principle itself. Then we show how these equations can be used in a novel approach to the two-body problem in...

Generating series and asymptotics of classical spin networks

Francesco Costantino, Julien Marché (2015)

Journal of the European Mathematical Society

We study classical spin networks with group SU 2 . In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.

Geometrodynamics of some non-relativistic incompressible fluids.

Agostino Pràstaro (1979)

Stochastica

In some previous papers [1, 2] we proposed a geometric formulation of continuum mechanics, where a continuous body is seen as a suitable differentiable fiber bundle C on the Galilean space-time M, beside a differential equation of order k, Ek(C), on C and the assignement of a frame Psi on M. This approach allowed us to treat continuum mechanics as a unitary field theory and to consider constitutive and dynamical properties in a more natural way. Further, the particular intrinsic geometrical framework...

Global Waves with Non-Positive Energy in General Relativity

Bachelot, Alain (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35Lxx, 35Pxx, 81Uxx, 83Cxx.The theory of the waves equations has a long history since M. Riesz and J. Hadamard. It is impossible to cite all the important results in the area, but we mention the authors related with our work: J. Leray [34] and Y. Choquet-Bruhat [9] (Cauchy problem), P. Lax and R. Phillips [33] (scattering theory for a compactly supported perturbation), L. H¨ ormander [27] and J-M. Bony [7] (microlocal analysis). In all these domains, V. Petkov has...

Currently displaying 1 – 20 of 30

Page 1 Next