Gravitational lensing from a spacetime perspective.
Neutron stars may emit steady gravitational wave signals that will be among the first kinds of gravitational wave signals that the new generation of interferometric detectors will search for. I consider here the possibility that accreting neutron stars may be driven into the steady emission of gravitational waves. I estimate the amplitudes that the waves may have if the accretion takes place at the Eddington limit, such as may happen when a neutron star spirals inside a giant star in the endphase...
According to general relativity, a binary consisting of spinning bodies will precess due to spin-orbit and spin-spin coupling. The corresponding modulation of its gravitational waves might be a serious problem for detecting such waves with simple post-Newtonian templates. A new family of templates that takes into account the complications arising from the orbital precession is proposed and its application and performance are discussed.
The detection of gravitational waves from coalescing compact binaries would be a computationally intensive process if a single bank of template waveforms (i.e., a one step search) is used. We present, in this paper, an alternative method which is a hierarchical search strategy involving two template banks. We show that the computational power required by such a two step search, for an on-line detection of the one parameter family of Newtonian signals, is 1/8 of that required when an on-line one...
Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by...
We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in . Moreover, it would be unique. Other values of , where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation. This seminar...