On extreme point fractional programming
Motivated by the wavelength division multiplexing in all-optical networks, we consider the problem of finding an optimal (with respect to the least possible number of wavelengths) set of internally node disjoint dipaths connecting all pairs of distinct nodes in the binary -dimensional hypercube, where . This system of dipaths constitutes a routing protocol that remains functional in the presence of up to faults (of nodes and/or links). The problem of constructing such protocols for general...
In this paper, we show how optimization methods can be used efficiently to determine the parameters of an oscillatory model of handwriting. Because these methods have to be used in real-time applications, this involves that the optimization problems must be rapidely solved. Hence, we developed an original heuristic algorithm, named FHA. This code was validated by comparing it (accuracy/CPU-times) with a multistart method based on Trust Region Reflective algorithm.
In practice, input data entering a state problem are almost always uncertain to some extent. Thus it is natural to consider a set of admissible input data instead of a fixed and unique input. The worst scenario method takes into account all states generated by and maximizes a functional criterion reflecting a particular feature of the state solution, as local stress, displacement, or temperature, for instance. An increase in the criterion value indicates a deterioration in the featured quantity....
A well-known theorem of Rabin yields a dimensional lower bound on the width of complete polynomial proofs of a system of linear algebraic inequalities. In this note we investigate a practically motivated class of systems where the same lower bound can be obtained on the width of almost all (noncomplete) linear proofs. The proof of our result is based on the Helly Theorem.
Henrici’s transformation is a generalization of Aitken’s -process to the vector case. It has been used for accelerating vector sequences. We use a modified version of Henrici’s transformation for solving some unconstrained nonlinear optimization problems. A convergence acceleration result is established and numerical examples are given.