Page 1

Displaying 1 – 14 of 14

Showing per page

On a dual network exterior point simplex type algorithm and its computational behavior

George Geranis, Konstantinos Paparrizos, Angelo Sifaleras (2012)

RAIRO - Operations Research - Recherche Opérationnelle

The minimum cost network flow problem, (MCNFP) constitutes a wide category of network flow problems. Recently a new dual network exterior point simplex algorithm (DNEPSA) for the MCNFP has been developed. This algorithm belongs to a special “exterior point simplex type” category. Similar to the classical dual network simplex algorithm (DNSA), this algorithm starts with a dual feasible tree-solution and after a number of iterations, it produces a solution that is both primal and dual feasible, i.e....

On a dual network exterior point simplex type algorithm and its computational behavior∗

George Geranis, Konstantinos Paparrizos, Angelo Sifaleras (2012)

RAIRO - Operations Research

The minimum cost network flow problem, (MCNFP) constitutes a wide category of network flow problems. Recently a new dual network exterior point simplex algorithm (DNEPSA) for the MCNFP has been developed. This algorithm belongs to a special “exterior point simplex type” category. Similar to the classical dual network simplex algorithm (DNSA), this algorithm starts with a dual feasible tree-solution and after a number of iterations, it produces a...

On the minimum cost multiple-source unsplittable flow problem

Meriema Belaidouni, Walid Ben-Ameur (2007)

RAIRO - Operations Research

The minimum cost multiple-source unsplittable flow problem is studied in this paper. A simple necessary condition to get a solution is proposed. It deals with capacities and demands and can be seen as a generalization of the well-known semi-metric condition for continuous multicommdity flows. A cutting plane algorithm is derived using a superadditive approach. The inequalities considered here are valid for single knapsack constraints. They are based on nondecreasing superadditive functions and...

Optimal networks for mass transportation problems

Alessio Brancolini, Giuseppe Buttazzo (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In the framework of transport theory, we are interested in the following optimization problem: given the distributions μ + of working people and μ - of their working places in an urban area, build a transportation network (such as a railway or an underground system) which minimizes a functional depending on the geometry of the network through a particular cost function. The functional is defined as the Wasserstein distance of μ + from μ - with respect to a metric which depends on the transportation network....

Optimal networks for mass transportation problems

Alessio Brancolini, Giuseppe Buttazzo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the framework of transport theory, we are interested in the following optimization problem: given the distributions µ+ of working people and µ- of their working places in an urban area, build a transportation network (such as a railway or an underground system) which minimizes a functional depending on the geometry of the network through a particular cost function. The functional is defined as the Wasserstein distance of µ+ from µ- with respect to a metric which depends on the transportation...

Optimal QoS control of interacting service stations

Abdelkrim Haqiq, I. Lambadaris, N. Mikou, L. Orozco-Barbosa (2002)

RAIRO - Operations Research - Recherche Opérationnelle

We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection...

Optimal QoS control of interacting service stations

Abdelkrim Haqiq, I. Lambadaris, N. Mikou, L. Orozco–Barbosa (2010)

RAIRO - Operations Research

We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection...

Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem

Giuseppe Buttazzo, Eugene Stepanov (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the paper the problem of constructing an optimal urban transportation network in a city with given densities of population and of workplaces is studied. The network is modeled by a closed connected set of assigned length, while the optimality condition consists in minimizing the Monge-Kantorovich functional representing the total transportation cost. The cost of trasporting a unit mass between two points is assumed to be proportional to the distance between them when the transportation is carried...

Optimization of power transmission systems using a multi-level decomposition approach

Alexandre Dolgui, Nikolai Guschinsky, Genrikh Levin (2007)

RAIRO - Operations Research

We discuss the use of operations research methods for computer-aided design of mechanical transmission systems. We consider how to choose simultaneously transmission ratios and basic design parameters of transmission elements (diameters, widths, modules and tooth number for gears, diameters of shafts). The objectives, by the order of importance, are: to minimize the deviation of the obtained speeds from desired; to maximize the transmission life; to minimize the total mass. To solve this...

Currently displaying 1 – 14 of 14

Page 1