On a machine sequencing problem (I)
We study the problem of scheduling jobs on a serial batching machine to minimize total tardiness. Jobs of the same batch start and are completed simultaneously and the length of a batch equals the sum of the processing times of its jobs. When a new batch starts, a constant setup time occurs. This problem s-batch is known to be NP-Hard in the ordinary sense. In this paper we show that it is solvable in pseudopolynomial time by dynamic programming.
We study the problem of scheduling jobs on a serial batching machine to minimize total tardiness. Jobs of the same batch start and are completed simultaneously and the length of a batch equals the sum of the processing times of its jobs. When a new batch starts, a constant setup time s occurs. This problem 1|s-batch | ∑Ti is known to be NP-Hard in the ordinary sense. In this paper we show that it is solvable in pseudopolynomial time by dynamic programming.
We present a modelling framework for two-stage and multi-stage mixed 0-1 problems under uncertainty for strategic Supply Chain Management, tactical production planning and operations assignment and scheduling. A scenario tree based scheme is used to represent the uncertainty. We present the Deterministic Equivalent Model of the stochastic mixed 0-1 programs with complete recourse that we study. The constraints are modelled by compact and splitting variable representations via scenarios.
Constructive heuristics for shop scheduling problems are often based on priority (or dispatching) rules. However, recent work has demonstrated that insertion algorithms that step by step insert operations or jobs into partial schedules usually clearly outperform priority rules. In this paper, we consider various job shop scheduling problems with setup times. For each job a specific technological route and a release date are given. Moreover, the jobs are partitioned into groups. A sequence independent...
We consider the unit execution time unit communication time (UET-UCT) scheduling model with hierarchical communications [1], and we study the impact of the hierarchical communications hypothesis on the hardness of approximation. We prove that there is no polynomial time approximation algorithm with performance guarantee smaller than (unless ). This result is an extension of the result of Hoogeveen et al. [6] who proved that there is no polynomial time -approximation algorithm with for the...
We consider the unit execution time unit communication time (UET-UCT) scheduling model with hierarchical communica tions [CITE], and we study the impact of the hierarchical communications hypothesis on the hardness of approximation. We prove that there is no polynomial time approximation algorithm with performance guarantee smaller than 5/4 (unless P = NP). This result is an extension of the result of Hoogeveen et al. [CITE] who proved that there is no polynomial time ρ-approximation algorithm...
In the job shop scheduling problem -units-, there are machines and each machine has an integer processing time of at most time units. Each job consists of a permutation of tasks corresponding to all machines and thus all jobs have an identical dilation . The contribution of this paper are the following results; (i) for jobs and every fixed , the makespan of an optimal schedule is at most , which extends the result of [3] for ; (ii) a randomized on-line approximation algorithm for -units-...
In the job shop scheduling problem k-units-Jm, there are m machines and each machine has an integer processing time of at most k time units. Each job consists of a permutation of m tasks corresponding to all machines and thus all jobs have an identical dilation D. The contribution of this paper are the following results; (i) for jobs and every fixed k, the makespan of an optimal schedule is at most D+ o(D), which extends the result of [3] for k=1; (ii) a randomized on-line approximation...
A matrix in -algebra (fuzzy matrix) is called weakly robust if is an eigenvector of only if is an eigenvector of . The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an algorithm for checking the weak robustness is described.
A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.