O matematické lingvistice
We consider a model for the control of a linear network flow system with unknown but bounded demand and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function that makes robust optimal the policy represented by the so-called linear saturated feedback control. We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations.
We consider a model for the control of a linear network flow system with unknown but bounded demand and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function that makes robust optimal the policy represented by the so-called linear saturated feedback control. We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations.
JEL Classification: G21, L13.The paper builds an oligopoly model of a debit card network. It examines the competition between debit card issuers. We show that there is an optimal pricing for the debit card network, which maximizes all issuer’s revenues. The paper also shows that establishing a link between debit card networks averages the costs provided that there is no growth in the customer’s usage of the networks, resulting from the link.
A condition weaker than the insatiability condition is given.
The minimum cost network flow problem, (MCNFP) constitutes a wide category of network flow problems. Recently a new dual network exterior point simplex algorithm (DNEPSA) for the MCNFP has been developed. This algorithm belongs to a special “exterior point simplex type” category. Similar to the classical dual network simplex algorithm (DNSA), this algorithm starts with a dual feasible tree-solution and after a number of iterations, it produces a solution that is both primal and dual feasible, i.e....
The minimum cost network flow problem, (MCNFP) constitutes a wide category of network flow problems. Recently a new dual network exterior point simplex algorithm (DNEPSA) for the MCNFP has been developed. This algorithm belongs to a special “exterior point simplex type” category. Similar to the classical dual network simplex algorithm (DNSA), this algorithm starts with a dual feasible tree-solution and after a number of iterations, it produces a...