On a functional equation of Luce.
The paper presents a natural application of multi-objective programming to household production and consumption theory. A contribution to multi-objective programming theory is also included.
We prove an approximation theorem in generalized Sobolev spaces with variable exponent and we give an application of this approximation result to a necessary condition in the calculus of variations.
The purpose of this paper is to discuss the properties of a new solution of the 2-person bargaining problem as formulated by Nash, the so-called Average Pay-off solution. This solution of a very simple form has a natural interpretation based on the center of gravity of the feasible set, and it is "more sensitive" to changes of feasible sets than any other standard bargaining solution. It satisfies the standard axioms: Pareto-Optimality, Symmetry, Scale Invariance, Continuity and Twisting. Moreover,...
In this paper we examine a nonstationary discrete time, infinite horizon growth model with uncertainty. Under very general hypotheses on the data of the model, we establish the existence of an optimal program and we show that the values of the finite horizon problems tend to that of the infinite horizon as the end of the planning period approaches infinity. Finally we derive a transversality condition for optimality which does not involve dual variables (prices).
We consider partial Browder-Tikhonov regularization techniques for variational inequality problems with P_0 cost mappings and box-constrained feasible sets. We present classes of economic equilibrium problems which satisfy such assumptions and propose a regularization method for these problems.
We consider a class of uniformly ergodic nonzero-sum stochastic games with the expected average payoff criterion, a separable metric state space and compact metric action spaces. We assume that the payoff and transition probability functions are uniformly continuous. Our aim is to prove the existence of stationary ε-equilibria for that class of ergodic stochastic games. This theorem extends to a much wider class of stochastic games a result proven recently by Bielecki [2].
We consider the problem of valuation of American (call and put) options written on a dividend paying stock governed by the geometric Brownian motion. We show that the value function has two different but related representations: by means of a solution of some nonlinear backward stochastic differential equation, and by a weak solution to some semilinear partial differential equation.
Bellman systems corresponding to stochastic differential games arising from a cost functional which models risk aspects are considered. Here it leads to diagonal elliptic systems without zero order term so that no simple -estimate is available.