Displaying 61 – 80 of 107

Showing per page

Modeling shortest path games with Petri nets: a Lyapunov based theory

Julio Clempner (2006)

International Journal of Applied Mathematics and Computer Science

In this paper we introduce a new modeling paradigm for shortest path games representation with Petri nets. Whereas previous works have restricted attention to tracking the net using Bellman's equation as a utility function, this work uses a Lyapunov-like function. In this sense, we change the traditional cost function by a trajectory-tracking function which is also an optimal cost-to-target function. This makes a significant difference in the conceptualization of the problem domain, allowing the...

Modelling financial time series using reflections of copulas

Jozef Komorník, Magda Komorníková (2013)

Kybernetika

We have intensified studies of reflections of copulas (that we introduced recently in [6]) and found that their convex combinations exhibit potentially useful fitting properties for original copulas of the Normal, Frank, Clayton and Gumbel types. We show that these properties enable us to construct interesting models for the relations between investment in stocks and gold.

Modelling Real World Using Stochastic Processes and Filtration

Peter Jaeger (2016)

Formalized Mathematics

First we give an implementation in Mizar [2] basic important definitions of stochastic finance, i.e. filtration ([9], pp. 183 and 185), adapted stochastic process ([9], p. 185) and predictable stochastic process ([6], p. 224). Second we give some concrete formalization and verification to real world examples. In article [8] we started to define random variables for a similar presentation to the book [6]. Here we continue this study. Next we define the stochastic process. For further definitions...

Modelling stock returns with AR-GARCH processes.

Elzbieta Ferenstein, Miroslaw Gasowski (2004)

SORT

Financial returns are often modelled as autoregressive time series with random disturbances having conditional heteroscedastic variances, especially with GARCH type processes. GARCH processes have been intensely studied in financial and econometric literature as risk models of many financial time series. Analyzing two data sets of stock prices we try to fit AR(1) processes with GARCH or EGARCH errors to the log returns. Moreover, hyperbolic or generalized error distributions occur to be good models...

Models for option pricing based on empirical characteristic function of returns

Karol Binkowski, Andrzej Kozek (2010)

Banach Center Publications

The standard Merton-Black-Scholes formula for European Option pricing serves only as approximation to real values of options. More advanced extensions include applications of Lévy processes and are based on characteristic functions, which are more convenient to use than the corresponding probability distributions. We found one of the Lewis (2001) general theoretical formulae for option pricing based on characteristic functions particularly suitable for a statistical approach to option pricing. By...

Models for stochastic mortality

Jan Iwanik (2007)

Applicationes Mathematicae

This paper is an attempt to present and analyse stochastic mortality models. We propose a couple of continuous-time stochastic models that are natural generalizations of the Gompertz law in the sense that they reduce to the Gompertz function when the volatility parameter is zero. We provide a statistical analysis of the available demographic data to show that the models fit historical data well. Finally, we give some practical examples for the multidimensional models.

Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities

Lulu Yin, Hongwei Liu, Jun Yang (2022)

Applications of Mathematics

We propose a modification of the golden ratio algorithm for solving pseudomonotone equilibrium problems with a Lipschitz-type condition in Hilbert spaces. A new non-monotone stepsize rule is used in the method. Without such an additional condition, the theorem of weak convergence is proved. Furthermore, with strongly pseudomonotone condition, the $R$-linear convergence rate of the method is established. The results obtained are applied to a variational inequality problem, and the convergence rate...

Monotone extenders for bounded c-valued functions

Kaori Yamazaki (2010)

Studia Mathematica

Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, C ( A , c ) the set of all bounded continuous functions f: A → c, and C A ( X , c ) the set of all functions f: X → c which are continuous at each point of A ⊂ X. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender u : C ( A , c ) C A ( X , c ) . This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer to a question...

Monotonicity and comparison results for nonnegative dynamic systems. Part II: Continuous-time case

Nico M. van Dijk, Karel Sladký (2006)

Kybernetika

This second Part II, which follows a first Part I for the discrete-time case (see [DijkSl1]), deals with monotonicity and comparison results, as generalization of the pure stochastic case, for stochastic dynamic systems with arbitrary nonnegative generators in the continuous-time case. In contrast with the discrete-time case the generalization is no longer straightforward. A discrete-time transformation will therefore be developed first. Next, results from Part I can be adopted. The conditions,...

Monotonicity and comparison results for nonnegative dynamic systems. Part I: Discrete-time case

Nico M. van Dijk, Karel Sladký (2006)

Kybernetika

In two subsequent parts, Part I and II, monotonicity and comparison results will be studied, as generalization of the pure stochastic case, for arbitrary dynamic systems governed by nonnegative matrices. Part I covers the discrete-time and Part II the continuous-time case. The research has initially been motivated by a reliability application contained in Part II. In the present Part I it is shown that monotonicity and comparison results, as known for Markov chains, do carry over rather smoothly...

Currently displaying 61 – 80 of 107