Page 1

Displaying 1 – 4 of 4

Showing per page

Feeding Threshold for Predators Stabilizes Predator-Prey Systems

D. Bontje, B. W. Kooi, G. A.K. van Voorn, S.A.L.M Kooijman (2009)

Mathematical Modelling of Natural Phenomena

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so called Paradox of enrichment, several mechanisms have been proposed to resolve this paradox. In this paper we will show that a feeding threshold in the functional response for predators feeding on a prey population stabilizes the system and that there exists a minimum threshold value above which the predator-prey system is unconditionally stable with respect to enrichment. Two models are analysed, the first being the classical...

Food Webs, Competition Graphs, and Habitat Formation

M. Cozzens (2011)

Mathematical Modelling of Natural Phenomena

One interesting example of a discrete mathematical model used in biology is a food web. The first biology courses in high school and in college present the fundamental nature of a food web, one that is understandable by students at all levels. But food webs as part of a larger system are often not addressed. This paper presents materials that can be used in undergraduate classes in biology (and mathematics) and provides students with the opportunity...

Fragmentation-Coagulation Models of Phytoplankton

Ryszard Rudnicki, Radosław Wieczorek (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We present two new models of the dynamics of phytoplankton aggregates. The first one is an individual-based model. Passing to infinity with the number of individuals, we obtain an Eulerian model. This model describes the evolution of the density of the spatial-mass distribution of aggregates. We show the existence and uniqueness of solutions of the evolution equation.

Currently displaying 1 – 4 of 4

Page 1