Page 1

Displaying 1 – 17 of 17

Showing per page

Mathematical Modeling Describing the Effect of Fishing and Dispersion on Hermaphrodite Population Dynamics

S. Ben Miled, A. Kebir, M. L. Hbid (2010)

Mathematical Modelling of Natural Phenomena

In order to study the impact of fishing on a grouper population, we propose in this paper to model the dynamics of a grouper population in a fishing territory by using structured models. For that purpose, we have integrated the natural population growth, the fishing, the competition for shelter and the dispersion. The dispersion was considered as a consequence of the competition. First we prove, that the grouper stocks may be less sensitive to the...

Microscale Complexity in the Ocean: Turbulence, Intermittency and Plankton Life

L. Seuront (2008)

Mathematical Modelling of Natural Phenomena

This contribution reviews the nonlinear stochastic properties of turbulent velocity and passive scalar intermittent fluctuations in Eulerian and Lagrangian turbulence. These properties are illustrated with original data sets of (i) velocity fluctuations collected in the field and in the laboratory, and (ii) temperature, salinity and in vivo fluorescence (a proxy of phytoplankton biomass, i.e. unicelled vegetals passively advected by turbulence) sampled from highly turbulent coastal waters. The strength...

Modeling Non-Stationary Processes of Diffusion of Solute Substances in the Near-Bottom Layer ofWater Reservoirs: Variation of the Direction of Flows and Assessment of Admissible Biogenic Load

V. V. Kozlov (2009)

Mathematical Modelling of Natural Phenomena

The paper is devoted to mathematical modelling and numerical computations of a nonstationary free boundary problem. The model is based on processes of molecular diffusion of some products of chemical decomposition of a solid organic substance concentrated in bottom sediments. It takes into account non-stationary multi-component and multi-stage chemical decomposition of organic substances and the processes of sorption desorption under aerobic and anaerobic conditions. Such a model allows one to...

Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2010)

Applications of Mathematics

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...

Modelling the spiders ballooning effect on the vineyard ecology

E. Venturino, M. Isaia, F. Bona, E. Issoglio, V. Triolo, G. Badino (2010)

Mathematical Modelling of Natural Phenomena

We consider an ecosystem in which spiders may be transported by the wind from vineyards into the surrounding woods and vice versa. The model takes into account this tranport phenomenon without building space explicitly into the governing equations. The equilibria of the dynamical system are analyzed together with their stability, showing that bifurcations may occur. Then the effects of indiscriminated spraying to keep pests under control is also investigated via suitable simulations.

Modelling the Spread of Infectious Diseases in Complex Metapopulations

J. Saldaña (2010)

Mathematical Modelling of Natural Phenomena

Two main approaches have been considered for modelling the dynamics of the SIS model on complex metapopulations, i.e, networks of populations connected by migratory flows whose configurations are described in terms of the connectivity distribution of nodes (patches) and the conditional probabilities of connections among classes of nodes sharing the same degree. In the first approach migration and transmission/recovery process alternate sequentially,...

Models of interactions between heterotrophic and autotrophic organisms

Urszula Foryś, Zuzanna Szymańska (2009)

Applicationes Mathematicae

We present two simple models describing relations between heterotrophic and autotrophic organisms in the land and water environments. The models are based on the Dawidowicz & Zalasiński models but we assume the boundedness of the oxygen resources. We perform a basic mathematical analysis of the models. The results of the analysis are complemented by numerical illustrations.

Multilevel Modeling of the Forest Resource Dynamics

I. N. Vladimirov, A. K. Chudnenko (2009)

Mathematical Modelling of Natural Phenomena

We examine the theoretical and applications-specific issues relating to modeling the temporal and spatial dynamics of forest ecosystems, based on the principles of investigating dynamical models. When developing the predictive dynamical models of forest resources, there is a possibility of achieving uniqueness of the solutions to equations by taking into account the initial and boundary conditions of the solution, and the conditions of the geographical environment. We present the results of a computer...

Currently displaying 1 – 17 of 17

Page 1