Displaying 321 – 340 of 422

Showing per page

Stochastic differential games involving impulse controls*

Feng Zhang (2011)

ESAIM: Control, Optimisation and Calculus of Variations

A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.

Stochastic differential inclusions

Michał Kisielewicz (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The definition and some existence theorems for stochastic differential inclusions depending only on selections theorems are given.

Stochastic differential inclusions

Michał Kisielewicz (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The definition and some existence theorems for stochastic differential inclusion dZₜ ∈ F(Zₜ)dXₜ, where F and X are set valued stochastic processes, are given.

Stochastic diffrential equations on Banach spaces and their optimal feedback control

(2012)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider stochastic differential equations on Banach spaces (not Hilbert). The system is semilinear and the principal operator generating a C₀-semigroup is perturbed by a class of bounded linear operators considered as feedback operators from an admissible set. We consider the corresponding family of measure valued functions and present sufficient conditions for weak compactness. Then we consider applications of this result to several interesting optimal feedback control problems....

Stochastic evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality

N.U. Ahmed (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider the question of optimal control for a class of stochastic evolution equations on infinite dimensional Hilbert spaces with controls appearing in both the drift and the diffusion operators. We consider relaxed controls (measure valued random processes) and briefly present some results on the question of existence of mild solutions including their regularity followed by a result on existence of partially observed optimal relaxed controls. Then we develop the necessary conditions...

Stochastic Inverse Problem with Noisy Simulator. Application to aeronautical model

Nabil Rachdi, Jean-Claude Fort, Thierry Klein (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Inverse problem is a current practice in engineering where the goal is to identify parameters from observed data through numerical models. These numerical models, also called Simulators, are built to represent the phenomenon making possible the inference. However, such representation can include some part of variability or commonly called uncertainty (see [4]), arising from some variables of the model. The phenomenon we study is the fuel mass needed to link two given countries with a commercial...

Stochastic multivariable self-tuning tracker for non-gaussian systems

Vojislav Filipovic (2005)

International Journal of Applied Mathematics and Computer Science

This paper considers the properties of a minimum variance self-tuning tracker for MIMO systems described by ARMAX models. It is assumed that the stochastic noise has a non-Gaussian distribution. Such an assumption introduces into a recursive algorithm a nonlinear transformation of the prediction error. The system under consideration is minimum phase with different dimensions for input and output vectors. In the paper the concept of Kronecker's product is used, which allows us to represent unknown...

Straight-lines modelling using planar information for monocular SLAM

André M. Santana, Adelardo A.D. Medeiros (2012)

International Journal of Applied Mathematics and Computer Science

This work proposes a SLAM (Simultaneous Localization And Mapping) solution based on an Extended Kalman Filter (EKF) in order to enable a robot to navigate along the environment using information from odometry and pre-existing lines on the floor. These lines are recognized by a Hough transform and are mapped into world measurements using a homography matrix. The prediction phase of the EKF is developed using an odometry model of the robot, and the updating makes use of the line parameters in Kalman...

Strong and weak solutions to stochastic inclusions

Michał Kisielewicz (1995)

Banach Center Publications

Existence of strong and weak solutions to stochastic inclusions x t - x s s t F τ ( x τ ) d τ + s t G τ ( x τ ) d w τ + s t n H τ , z ( x τ ) q ( d τ , d z ) and x t - x s s t F τ ( x τ ) d τ + s t G τ ( x τ ) d w τ + s t | z | 1 H τ , z ( x τ ) q ( d τ , d z ) + s t | z | > 1 H τ , z ( x τ ) p ( d τ , d z ) , where p and q are certain random measures, is considered.

Strong average optimality criterion for continuous-time Markov decision processes

Qingda Wei, Xian Chen (2014)

Kybernetika

This paper deals with continuous-time Markov decision processes with the unbounded transition rates under the strong average cost criterion. The state and action spaces are Borel spaces, and the costs are allowed to be unbounded from above and from below. Under mild conditions, we first prove that the finite-horizon optimal value function is a solution to the optimality equation for the case of uncountable state spaces and unbounded transition rates, and that there exists an optimal deterministic...

Strong 𝐗 -robustness of interval max-min matrices

Helena Myšková, Ján Plavka (2021)

Kybernetika

In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix A is called strongly robust if the orbit x , A x , A 2 x , reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong X-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong X-robustness is introduced...

Currently displaying 321 – 340 of 422