Displaying 301 – 320 of 422

Showing per page

State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra

Juri Belikov, Ülle Kotta, Maris Tõnso (2012)

Kybernetika

In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows...

Static hedging of barrier options with a smile : an inverse problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of u ^ is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L , continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C 0 -approximated, but an exact solution does not...

Static Hedging of Barrier Options with a Smile: An Inverse Problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of û is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C0-approximated, but an exact solution...

Static output feedback controller design

Vojtech Veselý (2001)

Kybernetika

In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix,...

Stationary optimal policies in a class of multichain positive dynamic programs with finite state space and risk-sensitive criterion

Rolando Cavazos-Cadena, Raul Montes-de-Oca (2001)

Applicationes Mathematicae

This work concerns Markov decision processes with finite state space and compact action sets. The decision maker is supposed to have a constant-risk sensitivity coefficient, and a control policy is graded via the risk-sensitive expected total-reward criterion associated with nonnegative one-step rewards. Assuming that the optimal value function is finite, under mild continuity and compactness restrictions the following result is established: If the number of ergodic classes when a stationary policy...

Statistical estimates for generalized splines

Magnus Egerstedt, Clyde Martin (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper it is shown that the generalized smoothing spline obtained by solving an optimal control problem for a linear control system converges to a deterministic curve even when the data points are perturbed by random noise. We furthermore show that such a spline acts as a filter for white noise. Examples are constructed that support the practical usefulness of the method as well as gives some hints as to the speed of convergence.

Statistical Estimates for Generalized Splines

Magnus Egerstedt, Clyde Martin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper it is shown that the generalized smoothing spline obtained by solving an optimal control problem for a linear control system converges to a deterministic curve even when the data points are perturbed by random noise. We furthermore show that such a spline acts as a filter for white noise. Examples are constructed that support the practical usefulness of the method as well as gives some hints as to the speed of convergence.

Statistical estimation of the dynamics of watershed dams

Zbisław Tabor (2009)

International Journal of Applied Mathematics and Computer Science

In the present study the notion of watershed contour dynamics, defined within the framework of mathematical morphology, is examined. It is shown that the dynamics are a direct measure of the “sharpness” of transition between neighboring watershed basins. The expressions for the expected value and the statistical error of the estimation of contour dynamics are derived in the presence of noise, based on extreme value theory. The sensitivity of contour dynamics to noise is studied. A statistical approach...

Statistical inference for fault detection: a complete algorithm based on kernel estimators

Piotr Kulczycki (2002)

Kybernetika

This article presents a new concept for a statistical fault detection system, including the detection, diagnosis, and prediction of faults. Theoretical material has been collected to provide a complete algorithm making possible the design of a usable system for statistical inference on the basis of the current value of a symptom vector. The use of elements of artificial intelligence enables self-correction and adaptation to changing conditions. The mathematical apparatus is founded on the methodology...

Statistical-learning control of multiple-delay systems with application to ATM networks

Chaouki T. Abdallah, Marco Ariola, Vladimir Koltchinskii (2001)

Kybernetika

Congestion control in the ABR class of ATM network presents interesting challenges due to the presence of multiple uncertain delays. Recently, probabilistic methods and statistical learning theory have been shown to provide approximate solutions to challenging control problems. In this paper, using some recent results by the authors, an efficient statistical algorithm is used to design a robust, fixed-structure, controller for a high-speed communication network with multiple uncertain propagation...

Štatistické modelovanie javu El Niño - Južná oscilácia v klimatológii

Nikola Jajcay, Milan Paluš (2017)

Pokroky matematiky, fyziky a astronomie

Pri modelovaní v klimatológii a meteorológii rozlišujeme dva základné druhy modelov — dynamické a štatistické. Dynamické modely majú fyzikálny základ, ktorý pozostáva z diskretizovaných diferenciálnych rovníc a súčasného stavu ako počiatočnej podmienky a následne modelujú stav systému integrovaním týchto rovníc v čase. Štatistické modely sú už v základe odlišné: ich fungovanie sa nezakladá na fyzikálnych mechanizmoch tvoriacich dynamiku modelovaného systému, ale sú odvodené z analýzy chodu počasia...

Stochastic control optimal in the Kullback sense

Jan Šindelář, Igor Vajda, Miroslav Kárný (2008)

Kybernetika

The paper solves the problem of minimization of the Kullback divergence between a partially known and a completely known probability distribution. It considers two probability distributions of a random vector ( u 1 , x 1 , ... , u T , x T ) on a sample space of 2 T dimensions. One of the distributions is known, the other is known only partially. Namely, only the conditional probability distributions of x τ given u 1 , x 1 , ... , u τ - 1 , x τ - 1 , u τ are known for τ = 1 , ... , T . Our objective is to determine the remaining conditional probability distributions of u τ given u 1 , x 1 , ... , u τ - 1 , x τ - 1 such...

Stochastic controllability of linear systems with state delays

Jerzy Klamka (2007)

International Journal of Applied Mathematics and Computer Science

A class of finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations with a single point delay in the state variables is considered. Using a theorem and methods adopted directly from deterministic controllability problems, necessary and sufficient conditions for various kinds of stochastic relative controllability are formulated and proved. It will be demonstrated that under suitable assumptions the relative controllability of an associated...

Stochastic controllability of systems with multiple delays in control

Jerzy Klamka (2009)

International Journal of Applied Mathematics and Computer Science

Finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations with multiple point delays in control are considered. Using the notation, theorems and methods used for deterministic controllability problems for linear dynamic systems with delays in control as well as necessary and sufficient conditions for various kinds of stochastic relative controllability in a given time interval are formulated and proved. It will be proved that, under...

Stochastic differential games involving impulse controls

Feng Zhang (2011)

ESAIM: Control, Optimisation and Calculus of Variations

A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.

Currently displaying 301 – 320 of 422