Some properties of accessible sets in non-linear control systems
In the paper the problem of mathematical properties of -operations and weak -operations introduced by the author for interpretation of connectives “and”, “or”, and “also” in fuzzy rules is considered. In previous author’s papers some interesting properties of fuzzy systems with these operations were shown. These operations are weaker than triangular norms used commonly for a fuzzy system described by set of rules of the type if – then. Monotonicity condition, required for triangular norms, is...
The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.
The problem of model matching by state feedback is reconsidered and some of the latest results are discussed.
In this article, we compare different types of representations for series with coefficients in complete idempotent semirings. Each of these representations was introduced to solve a particular problem. We show how they are or are not included one in the other and we present a common generalization of them.
We discuss a control problem for the Lamé system which naturally leads to the following uniqueness problem: Given a bounded domain of , are there non-trivial solutions of the evolution Lamé system with homogeneous Dirichlet boundary conditions for which the first two components vanish? We show that such solutions do not exist when the domain is Lipschitz. However, in two space dimensions one can build easily polygonal domains in which there are eigenvibrations with the first component being identically...
In this paper we discuss two closely related problems arising in environmental monitoring. The first is the source localization problem linked to the question How can one find an unknown "contamination source"? The second is an associated sensor placement problem: Where should we place sensors that are capable of providing the necessary "adequate data" for that? Our approach is based on some concepts and ideas developed in mathematical control theory of partial differential equations.
In this paper we show how to find convenient boundary actuators, termed boundary efficient actuators, ensuring finite-time space compensation of any boundary disturbance. This is the so-called remediability problem. Then we study the relationship between this remediability notion and controllability by boundary actuators, and hence the relationship between boundary strategic and boundary efficient actuators. We also determine the set of boundary remediable disturbances, and for a boundary disturbance,...