Page 1

Displaying 1 – 8 of 8

Showing per page

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue, Ronghui Lu (2012)

Kybernetika

A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are...

Generalized synchronization-based partial topology identification of complex networks

Xueqin Zhang, Yunru Zhu, Yuanshi Zheng (2023)

Kybernetika

In this paper, partial topology identification of complex networks is investigated based on synchronization method. We construct the response networks consisting of nodes with sim-pler dynamics than that in the drive networks. By constructing Lyapunov function, sufficient conditions are derived to guarantee partial topology identification by designing suitable controllers and parameters update laws. Several numerical examples are provided to illustrate the effectiveness of the theoretical results....

Genetic algorithm based method of elimination of residual oscillation in mechatronic systems

Peter Hubinský, Ladislav Jurišica, Branislav Vranka (2005)

Kybernetika

The paper presents control signals generation methods, preventing the excitation of residual vibration in slightly damped oscillational systems. It is focused on the feedforward methods, as most of the vibrations in examined processes are induced by the control, while the influence of disturbances is mostly negligible. Application of these methods involves ensuring of the insensitivity to natural frequency change, which can be reached in classical approach only by considerable increase of transient...

Geometric structures of stable output feedback systems

Zhenning Zhang, Huafei Sun, Fengwei Zhong (2009)

Kybernetika

In this paper, we investigate the geometric structures of the stable time-varying and the stable static output feedback systems. Firstly, we give a parametrization of stabilizing time-varying output feedback gains subject to certain constraints, that is, the subset of stabilizing time-varying output feedback gains is diffeomorphic to the Cartesian product of the set of time-varying positive definite matrices and the set of time-varying skew symmetric matrices satisfying certain algebraic conditions....

Global asymptotic stabilisation of an active mass damper for a flexible beam

Laura Menini, Antonio Tornambè, Luca Zaccarian (1999)

Kybernetika

In this paper, a finite dimensional approximated model of a mechanical system constituted by a vertical heavy flexible beam with lumped masses placed along the beam and a mobile mass located at the tip, is proposed; such a model is parametric in the approximation order, so that a prescribed accuracy in the representation of the actual system can be easily obtained with the proposed model. The system itself can be understood as a simple representation of a building subject to transverse vibrations,...

Global controllability and stabilization for the nonlinear Schrödinger equation on an interval

Camille Laurent (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove global internal controllability in large time for the nonlinear Schrödinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother.

Global output feedback stabilization for nonlinear fractional order time delay systems

Hanen Benali (2021)

Kybernetika

This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained....

Currently displaying 1 – 8 of 8

Page 1