Page 1

Displaying 1 – 7 of 7

Showing per page

Generalized immersion and nonlinear robust output regulation problem

Bernardino Castillo-Toledo, Sergej Čelikovský, S. Di Gennaro (2004)

Kybernetika

The problem of output regulation of the system affected by unknown constant parameters is considered here. Under certain assumptions, such a problem is known to be solvable using error feedback via the so-called immersion to an observable linear system with outputs. Nevertheless, for many interesting cases this kind of finite dimensional immersion is difficult or even impossible to find. In order to achieve constructive procedures for wider classes, this paper investigates a more general type of...

Global asymptotic stabilisation of an active mass damper for a flexible beam

Laura Menini, Antonio Tornambè, Luca Zaccarian (1999)

Kybernetika

In this paper, a finite dimensional approximated model of a mechanical system constituted by a vertical heavy flexible beam with lumped masses placed along the beam and a mobile mass located at the tip, is proposed; such a model is parametric in the approximation order, so that a prescribed accuracy in the representation of the actual system can be easily obtained with the proposed model. The system itself can be understood as a simple representation of a building subject to transverse vibrations,...

Global finite-time observers for a class of nonlinear systems

Yunyan Li, Yanjun Shen, Xiao Hua Xia (2013)

Kybernetika

Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability.

Global output feedback stabilization for nonlinear fractional order time delay systems

Hanen Benali (2021)

Kybernetika

This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained....

Global well-posedness and energy decay for a one dimensional porous-elastic system subject to a neutral delay

Houssem Eddine Khochemane, Sara Labidi, Sami Loucif, Abdelhak Djebabla (2025)

Mathematica Bohemica

We consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral type. First, we prove the global existence and uniqueness of the solution by using the Faedo-Galerkin approximations along with some energy estimates. Then, based on the energy method with some appropriate assumptions on the kernel of neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite of the destructive nature of delays in general, the damping mechanism...

Currently displaying 1 – 7 of 7

Page 1