Page 1

Displaying 1 – 5 of 5

Showing per page

A backstepping approach to ship course control

Anna Witkowska, Mirosław Tomera, Roman Smierzchalski (2007)

International Journal of Applied Mathematics and Computer Science

As an object of course control, the ship is characterised by a nonlinear function describing static manoeuvring characteristics that reflect the steady-state relation between the rudder deflection and the rate of turn of the hull. One of the methods which can be used for designing a nonlinear ship course controller is the backstepping method. It is used here for designing two configurations of nonlinear controllers, which are then applied to ship course control. The parameters of the obtained nonlinear...

A constructive method for solving stabilization problems

Vadim Azhmyakov (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The problem of asymptotic stabilization for a class of differential inclusions is considered. The problem of choosing the Lyapunov functions from the parametric class of polynomials for differential inclusions is reduced to that of searching saddle points of a suitable function. A numerical algorithm is used for this purpose. All the results thus obtained can be extended to cover the discrete systems described by difference inclusions.

A family of Lyapunov-based control schemes for maximum power point tracking in buck converters

Jorge Álvarez, Jorge Ruiz, Miguel Bernal (2023)

Kybernetika

This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero,...

A Lyapunov functional for a system with a time-varying delay

Józef Duda (2012)

International Journal of Applied Mathematics and Computer Science

The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval timevarying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov functional.

A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching

Guisheng Zhai, Xuping Xu (2010)

International Journal of Applied Mathematics and Computer Science

We establish a unified approach to stability analysis for switched linear descriptor systems under arbitrary switching in both continuous-time and discrete-time domains. The approach is based on common quadratic Lyapunov functions incorporated with linear matrix inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for the stability of all subsystems, then the switched system is stable under arbitrary switching. The analysis results are natural extensions of the existing...

Currently displaying 1 – 5 of 5

Page 1