Page 1

Displaying 1 – 5 of 5

Showing per page

On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...

On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke's generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...

On the L p -stabilization of the double integrator subject to input saturation

Yacine Chitour (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a finite-dimensional control system ( Σ ) x ˙ ( t ) = f ( x ( t ) , u ( t ) ) , such that there exists a feedback stabilizer k that renders x ˙ = f ( x , k ( x ) ) globally asymptotically stable. Moreover, for ( H , p , q ) with H an output map and 1 p q , we assume that there exists a 𝒦 -function α such that H ( x u ) q α ( u p ) , where x u is the maximal solution of ( Σ ) k x ˙ ( t ) = f ( x ( t ) , k ( x ( t ) ) + u ( t ) ) , corresponding to u and to the initial condition x ( 0 ) = 0 . Then, the gain function G ( H , p , q ) of ( H , p , q ) given by G ( H , p , q ) ( X ) = def sup u p = X H ( x u ) q , is well-defined. We call profile of k for ( H , p , q ) any 𝒦 -function which is of the same order of magnitude as G ( H , p , q ) . For the double integrator...

On the Lp-stabilization of the double integrator subject to input saturation

Yacine Chitour (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a finite-dimensional control system ( Σ ) x ˙ ( t ) = f ( x ( t ) , u ( t ) ) , such that there exists a feedback stabilizer k that renders x ˙ = f ( x , k ( x ) ) globally asymptotically stable. Moreover, for (H,p,q) with H an output map and 1 p q , we assume that there exists a 𝒦 -function α such that H ( x u ) q α ( u p ) , where xu is the maximal solution of ( Σ ) k x ˙ ( t ) = f ( x ( t ) , k ( x ( t ) ) + u ( t ) ) , corresponding to u and to the initial condition x(0)=0. Then, the gain function G ( H , p , q ) of (H,p,q) given by 14.5cm G ( H , p , q ) ( X ) = def sup u p = X H ( x u ) q , is well-defined. We call profile of k for (H,p,q) any 𝒦 -function which is of the same order of...

Currently displaying 1 – 5 of 5

Page 1