Page 1

Displaying 1 – 5 of 5

Showing per page

Uniqueness and approximate computation of optimal incomplete transportation plans

P. C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos, C. Matrán (2011)

Annales de l'I.H.P. Probabilités et statistiques

For α∈(0, 1) an α-trimming, P∗, of a probability P is a new probability obtained by re-weighting the probability of any Borel set, B, according to a positive weight function, f≤1/(1−α), in the way P∗(B)=∫Bf(x)P(dx). If P, Q are probability measures on euclidean space, we consider the problem of obtaining the best L2-Wasserstein approximation between: (a) a fixed probability and trimmed versions of the other; (b) trimmed versions of both probabilities. These best trimmed approximations naturally...

Uniqueness of optimal policies as a generic property of discounted Markov decision processes: Ekeland's variational principle approach

R. Israel Ortega-Gutiérrez, Raúl Montes-de-Oca, Enrique Lemus-Rodríguez (2016)

Kybernetika

Many examples in optimization, ranging from Linear Programming to Markov Decision Processes (MDPs), present more than one optimal solution. The study of this non-uniqueness is of great mathematical interest. In this paper the authors show that in a specific family of discounted MDPs, non-uniqueness is a “fragile” property through Ekeland's Principle for each problem with at least two optimal policies; a perturbed model is produced with a unique optimal policy. This result not only supersedes previous...

Currently displaying 1 – 5 of 5

Page 1