Previous Page 3

Displaying 41 – 49 of 49

Showing per page

Robust parameter design using the weighted metric method - The case of 'the smaller the better'

Mostafa Kamali Ardakani, Rassoul Noorossana, Seyed Taghi Akhavan Niaki, Homayoun Lahijanian (2009)

International Journal of Applied Mathematics and Computer Science

In process robustness studies, it is desirable to minimize the influence of noise factors on the system and simultaneously determine the levels of controllable factors optimizing the overall response or outcome. In the cases when a random effects model is applicable and a fixed effects model is assumed instead, an increase in the variance of the coefficient vector should be expected. In this paper, the impacts of this assumption on the results of the experiment in the context of robust parameter...

Robust pole placement for second-order systems: an LMI approach

Didier Henrion, Michael Šebek, Vladimír Kučera (2005)

Kybernetika

Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.

Robust portfolio selection under exponential preferences

Dariusz Zawisza (2010)

Applicationes Mathematicae

We consider an incomplete market with an untradable stochastic factor and a robust investment problem based on the CARA utility. We formulate it as a stochastic differential game problem, and use Hamilton-Jacobi-Bellman-Isaacs equations to derive an explicit representation of the robust optimal portfolio; the HJBI equation is transformed using a substitution of the Cole-Hopf type. Not only the pure investment problem, but also a problem of robust hedging is taken into account: an agent tries to...

Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: application to an anaerobic bioreactor

Francisco-Ronay López-Estrada, Jean-Christophe Ponsart, Didier Theilliol, Carlos-Manuel Astorga-Zaragoza, Jorge-Luis Camas-Anzueto (2015)

International Journal of Applied Mathematics and Computer Science

This paper addresses the design of a state estimation and sensor fault detection, isolation and fault estimation observer for descriptor-linear parameter varying (D-LPV) systems. In contrast to where the scheduling functions depend on some measurable time varying state, the proposed method considers the scheduling function depending on an unmeasurable state vector. In order to isolate, detect and estimate sensor faults, an augmented system is constructed by considering faults to be auxiliary state...

Currently displaying 41 – 49 of 49

Previous Page 3