The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Autoři článku se zabývají otázkou, jak přispět k rozvoji aritmetických dovedností žáků. V článku jsou představeny některé méně známe vlastnosti Fibonacciho posloupnosti. Autoři ukazují, jak může být Fibonacciho posloupnost využita v rámci výuky dělitelnosti, ale i důkazových technik. V článku bude přístupnou formou dokázáno, že Fibonacciho posloupnost je nejen dělitelnostní, ale i silně dělitelnostní.
Článek si dává za cíl ukázat, že z kanonických polynomů Dn(x) lze pomocí určitých lineárních kombinací vytvořit všechny polynomy, které jsou dělitelné n!. Autor formuluje větu o dělitelnosti těchto polynomů n!. Z této věty pak vyplývá celá řada tvrzení, z kterých uvádí pouze prvních šest. V každém tvrzení nalezne polynom a postupně tvrdí, že první je dělitelný 2, další 6, další 24, další číslem 120, další 720 a poslední 5040 pro celočíselné koeficienty. Vzhledem k těmto tvrzením formuluje obecné...
Currently displaying 1 –
7 of
7