The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
208
This paper analyzes the proof-theoretic strength of an infinite version of several theorems from algorithmic graph theory. In particular, theorems on reachability matrices, shortest path matrices, topological sorting, and minimal spanning trees are considered.
We compare two methods of proving separable reduction theorems in functional analysis - the method of rich families and the method of elementary submodels. We show that any result proved using rich families holds also when formulated with elementary submodels and the converse is true in spaces with fundamental minimal system and in spaces of density ℵ1. We do not know whether the converse is true in general. We apply our results to show that a projectional skeleton may be without loss of generality...
In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the...
In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties. In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described...
In a countable superstable NDOP theory, the existence of a rigid -saturated model implies the existence of rigid -saturated models of power λ for every .
We prove a version of Hrushovski's Socle Lemma for rigid groups in an arbitrary simple theory.
Ring-like quantum structures generalizing Boolean rings and having the property that the terms corresponding to the two normal forms of the symmetric difference in Boolean algebras coincide are investigated. Subclasses of these structures are algebraically characterized and related to quantum logic. In particular, a physical interpretation of the proposed model following Mackey's approach to axiomatic quantum mechanics is given.
The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with...
In this paper, a robust neural network control scheme for the switching dynamical model of the robotic manipulators has been addressed. Radial basis function (RBF) neural networks are employed to approximate unknown functions of robotic manipulators and a compensation controller is designed to enhance system robustness. The weight update law of the robotic manipulator is based on switched multiple Lyapunov function method and the periodically switching law which is suitable for practical implementation...
We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about ϕ-types for ϕ NIP. In particular, we show that if M is a countable model, then an M-invariant ϕ-type is Borel-definable. Also, the space of M-invariant ϕ-types is a Rosenthal compactum, which implies a number of topological tameness properties.
The Rothberger number (ℐ) of a definable ideal ℐ on ω is the least cardinal κ such that there exists a Rothberger gap of type (ω,κ) in the quotient algebra (ω)/ℐ. We investigate (ℐ) for a class of ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ₁, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum...
Currently displaying 181 –
200 of
208