Displaying 921 – 940 of 5971

Showing per page

Choice principles in elementary topology and analysis

Horst Herrlich (1997)

Commentationes Mathematicae Universitatis Carolinae

Many fundamental mathematical results fail in ZF, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results — old and new — that specify how much “choice” is needed precisely to validate each of certain basic analytical and topological results.

Choice principles in Węglorz’ models

N. Brunner, Paul Howard, Jean Rubin (1997)

Fundamenta Mathematicae

Węglorz' models are models for set theory without the axiom of choice. Each one is determined by an atomic Boolean algebra. Here the algebraic properties of the Boolean algebra are compared to the set theoretic properties of the model.

Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC

Amitayu Banerjee, Zalán Gyenis (2021)

Commentationes Mathematicae Universitatis Carolinae

In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. If in a partially ordered set, all chains are finite and all antichains have size α , then the set has size α for any regular α . Every partially ordered set without a maximal element has two disjoint cofinal sub sets – CS. Every partially ordered set...

Circumcenter, Circumcircle and Centroid of a Triangle

Roland Coghetto (2016)

Formalized Mathematics

We introduce, using the Mizar system [1], some basic concepts of Euclidean geometry: the half length and the midpoint of a segment, the perpendicular bisector of a segment, the medians (the cevians that join the vertices of a triangle to the midpoints of the opposite sides) of a triangle. We prove the existence and uniqueness of the circumcenter of a triangle (the intersection of the three perpendicular bisectors of the sides of the triangle). The extended law of sines and the formula of the radius...

Class preserving mappings of equivalence systems

Ivan Chajda (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

By an equivalence system is meant a couple 𝒜 = ( A , θ ) where A is a non-void set and θ is an equivalence on A . A mapping h of an equivalence system 𝒜 into is called a class preserving mapping if h ( [ a ] θ ) = [ h ( a ) ] θ ' for each a A . We will characterize class preserving mappings by means of permutability of θ with the equivalence Φ h induced by h .

Classes de Wadge potentielles et théorèmes d'uniformisation partielle

Dominique Lecomte (1993)

Fundamenta Mathematicae

On cherche à donner une construction aussi simple que possible d'un borélien donné d'un produit de deux espaces polonais. D'où l'introduction de la notion de classe de Wadge potentielle. On étudie notamment ce que signifie "ne pas être potentiellement fermé", en montrant des résultats de type Hurewicz. Ceci nous amène naturellement à des théorèmes d'uniformisation partielle, sur des parties "grosses", au sens du cardinal ou de la catégorie.

Classes of filters in generalizations of commutative fuzzy structures

Jiří Rachůnek, Dana Šalounová (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Bounded commutative residuated lattice ordered monoids ( R -monoids) are a common generalization of 𝐵𝐿 -algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative R -monoids.

Classes of fuzzy filters of residuated lattice ordered monoids

Jiří Rachůnek, Dana Šalounová (2010)

Mathematica Bohemica

The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of BL -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...

Classes of fuzzy measures and distortion

Ľubica Valášková, Peter Struk (2005)

Kybernetika

Distortion of fuzzy measures is discussed. A special attention is paid to the preservation of submodularity and supermodularity, belief and plausibility. Full characterization of distortion functions preserving the mentioned properties of fuzzy measures is given.

Currently displaying 921 – 940 of 5971